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Abstract

We consider a blended call center with calls arriving over time and an infinitely backlogged

amount of outbound jobs. Inbound calls have a non-preemptive priority over outbound jobs.

The inbound call service is characterized by three successive stages where the second one is

a break, i.e., there is no required interaction between the customer and the agent for a non-

negligible duration. This leads to a new opportunity to efficiently split the agent time between

inbound calls and outbound jobs.

We focus on the optimization of the outbound job routing to agents. The objective is to

maximize the expected throughput of outbound jobs subject to a constraint on the inbound

call waiting time. We develop a general framework with two parameters for the outbound job

routing to agents. One parameter controls the routing between calls, and the other does the

control inside a call. We then derive structural results with regard to the optimization problem

and numerically illustrate them. Various guidelines to call center managers are provided. In

particular, we prove for the optimal routing that at least one of the two outbound job routing

parameters has an extreme value.

Keywords: Call centers; blending; task overlapping; routing; performance evaluation; waiting

times; optimization; queueing systems; Markov chains.

1 Introduction

Context and Motivation: New technology-driven innovations in call centers are multiplying

the opportunities to make more efficient use of an agent as she can handle different types of

workflow, including inbound calls, outbound calls, emails and chats. However, several issues on

the management of call center operations emerged also as a result of advanced technology. In this

paper, we consider a call center with two types of jobs, inbound and outbound jobs. We focus on



how to efficiently share the agent time between the two types of jobs in order to improve the call

center performance.

Call center situations where inbound calls and outbound jobs (outbound calls or emails) are

combined is referred to as blending. The key distinction of problems with blending comes from the

fact that outbound jobs are less urgent and can be inventoried to some extent, relative to incoming

calls. Therefore, managers are likely to give a strict priority to inbound calls over outbound jobs.

An important question here is what should be the best way of routing outbound jobs to agents,

i.e., as a function of the system parameters and the service level constraints (on calls and outbound

jobs), when should we ask the agent to treat outbound jobs between the call conversations (Bernett

et al., 2002; Bhulai and Koole, 2003; Pang and Perry, 2014; Legros et al., 2015). The outbound job

routing question is further important in the context of the call center applications we consider here.

We encountered examples where a call conversation between an agent and a customer contains a

natural break. We mean by this a time interval with no interaction between the agent and the

customer. During the conversation, the agent asks the customer to do some necessary operations

in her own (without the need of the agent availability). After finishing those operations, the

conversation between the two parties can start again. Inside an underway conversation, the agent

is then free to do another job if needed.

For an efficient use of the agent time, one would think about the routing of the less urgent jobs

not only when the system is empty of calls, but also during call conversations. In practice, such a

situation often occurs. For example, an agent in an internet hotline call center asks the customer

to reboot her modem or her computer which may take some time where no interactions can take

place. It is also often the case that a call center agent of an electricity supplier company asks the

customer for the serial number of her electricity meter box. This box is usually located outside

of the house and is locked, so, the customer needs some non-negligible time to get the required

information. Another example is that of commercial call centers with a financial transaction during

the call conversation. After some time from the start of the call conversation, the customer is asked

to do an online payment on a website before coming back to the same agent in order to finish the

conversation. The online payment requires the customer to locate her credit card, next she enters

the credit card numbers, next she goes through the automated safety check with her bank (using

SMS for example), which may take some minutes.

As an illustration, we provide real-life data from a vehicle glass repair call center company

where the service process consists of three phases and a break in the second phase. Figure 1 gives

the empirical probability density functions of the three service phase durations for 5986 calls. We

observe that these durations are random and find a good log-normal fit. The p−values associated

with the statistical χ2 tests are all above the threshold of 5%. For phases 1, 2 and 3, they are 0.056,

0.561 and 0.101, respectively. In particular, we observe that the average break duration (phase 2)
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is 2.39 min, and represents in average around 30% of the total service duration. It is natural for

such a setting that the system manager thinks about using the opportunity to route outbound jobs

(or back-office tasks in general) to an agent during the break of an ongoing call conversation, and

not only when no calls are waiting in the queue. The advantage is an efficient use of the agent time

and therefore a better call center performance.
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Figure 1: Empirical probability density functions of phase durations

Main Contributions: We consider a call center with an infinite amount of outbound jobs. In-

bound calls arrive over time, and in the middle of an inbound call conversation, a break is required.

Given this type of call centers, we are interested in optimizing its functioning by controlling how the

resource should be shared between the two types of jobs. Calls are more important than outbound

jobs in the sense that calls request a quasi-instantaneous answer (waiting time in the order of some

minutes), however outbound jobs are more flexible and could be delayed for several hours. An

appropriate functioning is therefore that an agent works on inbound calls as long as there is work

to do for them. The agent can then work on outbound jobs when she becomes free from calls, i.e.,

after a service completion when no calls are waiting in the queue, or during the call conversation

break. We assume that calls have a strict non-preemptive priority over outbound jobs, which means

that if a call is busy with an outbound job (that has started after a service completion or during the

break), the agent will finish first the outbound job before turning to a new arrived call to the queue
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or a call that has accomplished the requested operations and wants to start again the conversation

to finish her service. The non-preemption priority rule is coherent with the operations in practice

and also to the call center literature (Bhulai and Koole, 2003; Deslauriers et al., 2007). It is not

appropriate to stop the service of a low priority customer.

We focus on the research question: when should the agent treat outbound jobs? Between calls,

or inside a call conversation, or in both situations? Given the nature of the job types, a call

center manager in practice would be interested in maximizing the number of treated outbound jobs

while respecting some service level objective on the call waiting time (Bhulai and Koole, 2003).

For inbound calls, we are interested in the steady-state performance measures in terms of the

expected waiting time, the probability that the waiting time is less than a given threshold, and the

probability of delay. For outbound jobs, we are interested in the steady-state performance in terms

of the expected throughput, i.e., the number of treated outbound jobs per unit of time.

Despite its prevalence in practice, there are no papers in the call center literature addressing

such a question. Most of the related papers only focus on the outbound job routing between call

conversations but not inside a call conversation. To answer this question, we develop a general

framework with two parameters for the outbound job routing to agents. One parameter controls

the routing between calls, and the other does the control inside a call conversation. Although this

modeling is not optimal, its performance measures as shown later are close to the optimal ones and

its routing policy is easier to implement than the complex optimal routing. For the tractability

of the analysis, we first focus on the single server case. We then discuss the extension of the

results to the multi-server case and its applicability to a more complex setting with may include

abandonment, general service time distribution and a time-dependent arrival process. For the single

server modeling, we first evaluate the performance measures using a Markov chain analysis. Second,

we propose an optimization method of the routing parameters for the problem of maximizing the

outbound job expected throughput under a constraint on the service level of the call waiting time.

As a function of the system parameters (the server utilization, the outbound job service time, the

severity of the call service level constraint, etc.), we derive various guidelines to managers. In

particular, we prove for the optimal routing that at least one of the two outbound job routing

parameters has an extreme value. As detailed later, an extreme value means that the agent should

always do outbound jobs inside a call (or between calls) or not at all. In other cases, the parameters

lead to randomized policies. We also solve the optimization problem by proposing four particular

cases corresponding to the extreme values of the probabilistic parameters. We analytically derive

the conditions under which one particular case would be preferred to another one. The interest from

the particular cases is that they are easy to understand by agents and managers. Several numerical

experiments are used to illustrate the analysis. We then focus on the routing optimization problem

for the multi-server case in a more general setting, using simulation and approximations developed
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under the light and heavy-traffic regimes. We found that most of the observations of the single

server case are still valid (in particular the result stating that at least one control parameter has

an extreme value). This justifies the applicability of our results to real-life call centers.

Paper Organization: The rest of the paper is organized as follows. In Section 2 we review

some of the related literature. In Section 3, we describe the blended call center modeling and the

optimization problem. In Section 4, we consider a single server analysis and develop a method

based on the analysis of Markov chains in order to derive the performance measures of interest for

inbound and outbound jobs. Next, we focus on optimizing the outbound job routing parameters.

In Section 5, we extend the previous analysis to the multi-server case using simulation and also

asymptotic approximations. In Section 6, we assess the applicability of our analysis to a more setup

with abandonment, general service time distribution and time-dependent arrival process. Finally,

Section 7 concludes the article.

2 Literature Review

There are three related streams of literature to this paper. The first one deals with blended call

centers. The second one is the Markov chain analysis for queueing systems with phase-type service

time distributions. The third one is related to the cognitive analysis, or in other words the ability

for an agent to treat and switch between different job types.

The literature on blended call centers consists of developing performance evaluation and optimal

blending policies. Deslauriers et al. (2007) develop a Markov chain for the modeling of a Bell Canada

blended call center with inbound and outbound calls. The performance measures of interest are

the rate of outbound calls and the waiting time of inbound calls. Through simulation experiments

they prove the efficiency of their Markov chain model to reflect reality. Brandt and Brandt (1999)

develop an approximation method to evaluate the performance of a call center model with impatient

inbound calls and infinitely patient outbound calls of lower priority than the inbound traffic. Bhulai

and Koole (2003) consider a similar model to the one analyzed in this paper, except that the call

service is done in a single stage without a possible break. The model consists of inbound and

outbound jobs where the inbound jobs have a non-preemptive priority over the outbound ones.

For the special case of identically distributed service times for the two jobs, they optimize the

outbound jobs routing subject to a constraint on the expected waiting time of inbound jobs. Gans

and Zhou (2003) study a call center with two job types where one of the jobs is an infinitely

backlogged queue. They develop a routing policy consisting in the reservation of servers in order

to maximize the expected throughput on the jobs of the infinitely backlogged queue. Armony

and Maglaras (2004) and Legros et al. (2016) analyze a similar model with a call-back option for

incoming customers. The customer behavior is captured through a probabilistic choice model.
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Other references include (Bernett et al., 2002; Keblis and Chen, 2006; Pichitlamken et al., 2003).

The analysis in this paper is also related to the analysis of queueing systems with phase-type

service time distributions. We model the call service time through three successive exponentially

distributed stages, where the second stage may also overlap with the service of one or several

outbound jobs with an exponential time duration for each. The performance evaluation of such

systems involves the steady-state analysis of Markov chains and is usually addressed using numerical

methods. We refer the reader to Kleinrock (1975) for simple models with Erlang service time

distributions. For more complex systems, the reader is refereed to Bolotin (1994); Brown et al.

(2005); Guo and Zipkin (2008). Our approach to derive the performance measures is based on first

deriving the stationary system state probabilities for two-dimension and semi-infinite continuous

time Markov chains. One may find in the literature three methods for solving such models. The

first one is to truncate the state space, see for example Seelen (1986) and Keilson et al. (1987).

The second method is called spectral expansion (Daigle and Lucantoni, 1991; Mitrani and Chakka,

1995; Choudhury et al., 1995). It is based on expressing the invariant vector of the process in

terms of the eigenvalues and the eigenvectors of a matrix polynomial. The third one is the matrix-

geometric method (Neuts, 1995). The approach relies on determining the minimal positive solution

of a non-linear matrix equation. The invariant vector is then expressed in terms of powers of itself.

In our analysis, we reduce the problem to solving cubic and quartic equations, for which we use

the method of Cardan and Ferrari (Gourdon, 1994).

Finally, we briefly mention some studies on human multi-tasking, as it is the case for the agents

in our setting. Gladstones et al. (1989) show that a simultaneous treatment of jobs is not efficient

even with two easy jobs because of the possible interferences. In our models, we are not considering

simultaneous tasks in the sense that an agent cannot talk to a customer and at the same time

treats an outbound job. More interestingly, Charron and Koechlin (2010) studied the capacity of

the frontal lobe to deal with different tasks by alternation (as here for calls and outbound jobs).

They develop the notion of branching : capacity of the brain to remember information while doing

something else. They show that the number of jobs done alternatively has to be limited to two

to avoid loss of information. Dux et al. (2009) showed that training and experience can improve

multi-tasking performance. The risk from alternating between two tasks is the loss of efficiency

because of switching times. An important aspect to avoid inefficiency as pointed out by Dux et al.

(2009) and Charron and Koechlin (2010) is that the alternation should be at most between two

tasks quite different in nature (like inbound and outbound jobs).
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3 Problem Description and Modeling

We consider a call center modeling with s identical agents and two types of jobs: inbound calls and

outbound jobs. The arrival process of inbound calls is assumed to be Poisson with mean arrival rate

λ. There is an infinite amount of outbound jobs (emails, back-office tasks, etc.) that are waiting

to be treated in a dedicated first come, first served (FCFS) queue with infinite capacity.

We consider call center applications where the communication between the agent and the cus-

tomer includes a break (the customer does not need the agent availability). We model the service

time of a call by three successive stages. The first stage is a conversation between the two parties.

The second stage is the break, i.e., no interactions between the two parties. The third and final

step is again a conversation between the two parties. The service completion occurs as soon as the

third stage finishes. We model each stage duration as an exponentially distributed random variable,

with rate µi for stage i. The durations of the three stages are jointly independent. This Marko-

vian assumption, which is common in modeling in service operations, is reasonable for systems

with high service time variability where service times are typically small but there are occasionally

long service times. An agent handles an outbound job within one single step without interruption.

The time duration of an outbound job treatment is random and assumed to be exponentially dis-

tributed with rate µ0. Moreover, we assume the service durations are not known by the system

manager before realization. So, the routing decisions cannot be based on such information. This

is a common assumption for call centers. For other applications, like packet delivery on internet,

the random variables may be realized before service. Examples of related studies include Zhang

(1995); Le Boudec (1998); Gevros et al. (2001). The queueing model is depicted in Figure 2.

µ1

�����, λ
µ2 µ3

∞����	�
�
�	��

µ0

Figure 2: Queueing model

Bhulai and Koole (2003) and Gans and Zhou (2003) consider a similar model with inbound

customers who arrive according to a homogeneous Poisson process and an infinite amount of out-

bound jobs, exactly like in our model. Their objective is to maximize the throughput of served

outbounds with a constraint on the waiting time of inbounds. They show, using a Markov decision

process approach, that a strict priority should be given for inbound calls. Using their results, we

also assume the strict priority of inbound calls. More precisely, upon arrival, a call is immediately
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handled by an available agent, if any. If not, the call waits for service in an infinite FCFS dedi-

cated queue. Inbound calls have a non-preemptive priority over outbound jobs. Non-preemption

is a natural assumption for our application since outbound jobs could be for example outbound

calls. We are interested in an efficient use of the agent time between inbound calls and outbound

jobs. More concretely, we want to answer the question when should we treat outbound jobs for the

following optimization problem{
Maximize the expected throughput of outbound jobs

subject to a service level constraint on the call waiting time in the queue.
(1)

We numerically address Problem (1) using a Markov Decision Process (MDP) approach. As shown

in Section 1 of the online appendix, the optimal policy is very complex. It depends on six param-

eters: the number of inbound calls waiting in the queue, the number of agents working on each

stage of service, the number of outbound jobs being in service between calls and the number of

outbound jobs being in service inside the break. This makes the optimal policy hard to obtain

in general and then hard to implement in practice. We instead propose a simpler model for the

routing of outbound jobs to agents. It is referred to as probabilistic model or Model PM and is

described below. Although this model is not optimal, we numerically show its efficiency through a

comparison with the optimal policy (see Section 1 of the online appendix). It is moreover easy to

implement and to understand by a system manager.

Probabilistic Model (Model PM): We distinguish the two situations when an agent is available

to handle outbound jobs between two call conversations, or inside a call conversation.

Between two calls : just after a call service completion (as soon as the third stage finishes) and

no waiting calls are in the queue, the agent treats one or more outbound jobs with probability p

(independently of any other event), or does not work on outbound jobs at all with probability 1−p.

In the latter case, the agent simply remains idle and waits for a new call arrival to handle it. In

the former case (with probability p), she selects a first outbound job to work on. After finishing

the treatment of this outbound job, there are two cases: either a new call has already arrived and

it is now waiting in the queue, or the queue of calls is still empty. If a call has arrived, the agent

handles that call. If not, she selects another outbound job, and so on. At some point in time, a

new call would arrive while the agent is working on an outbound job. The agent will then handle

the call as soon as she finishes the outbound job treatment.

Inside a call : Just after the end of the first stage of an underway call service (regardless whether

there are other waiting calls in the queue or not), the agent treats one or more outbound jobs with

probability q (independently of any other event), or does not work on outbound jobs at all with

probability 1−q. In the latter case, the agent simply remains idle and waits for the currently served
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customer to finish her operations on her own (corresponding to the second call service stage, i.e.,

the agent break). As soon as the customer finishes by herself her second service stage, the agent

starts the third and last service stage. In the former case (with probability q), she selects a first

outbound job to work on. After finishing the treatment of this outbound job, there are two cases:

either the currently served customer has already finished her second service stage, or not yet. If

she does, the agent starts the third stage of the customer call service. If not, she selects another

outbound job, and so on. At some point in time, the currently served call would finish her second

service while the agent is working on an outbound job. The agent will then handle the call as soon

as she finishes the the outbound job treatment. Model PM is depicted in Figure 3.

µ1 µ2 µ3 µ1 µ2 µ3 µ1 µ2 µ3

Agent works on emails, with proba p

Agent works on emails, with proba q

Figure 3: Model PM

The decision to initiate an outbound job is only taken at an inbound service completion (control

parameter p) or at the completion of the first phase of service of an inbound (control parameter

q). After each outbound job service completion, a new outbound service is automatically initiated.

One may think of modifying Model PM by allowing to switch and stop serving outbound jobs.

Actually, due to the exponential assumptions for the inter-arrival, the second phase of service and

the outbound service times, Model PM is equivalent to a model where a new decision may be taken

upon each outbound service completion. The proof of the result is given in Section 2 of the online

appendix.

We further consider next four particular cases of Model PM as shown in Table 1. Although

these models might appear to be too restrictive to solve Problem (1), we show later their merit in

Section 4.2.2 when we focus on the optimization of p and q in Model PM. Moreover, they have the

advantage of being easy to implement in practice, easy to understand by managers, and easy to

follow by agents. Note that in Model 1, the expected throughput of outbound jobs is zero. The

interest from Model 1 is in the extreme case of a very high workload of calls or a very restrictive

constraint on the call waiting time.

The objective for the system manager is to find the optimal values for the control parameters

p and q or to determine among the particular cases of Model PM which one would better answer

Problem (1). The knowledge of the system parameters is essential to obtain implementable results.

Section 3 of the online appendix is devoted to the estimation of these parameters based on real

data.

9



Table 1: Particular cases of Model PM
Model Description

Model 1 p = q = 0, no treatment of outbound jobs

Model 2 p = 1 and q = 0, systematic treatment of outbound jobs only between two calls

Model 3 p = 0 and q = 1, systematic treatment of outbound jobs only during the break

Model 4 p = q = 1, systematic treatment of outbound jobs between two calls and during the break

4 Single Server Analysis

In this section, we provide an exact method to characterize the call waiting time in the queue and

the outbound job expected throughput for Model PM and its extreme cases for a single server model.

We also develop various structural results for the optimization problem. The tractable analysis in

this section enhances our understanding of the system behavior. This would not be possible to do

directly for the multi-server case since an exact analysis is very complex. However, we extend the

analysis to multi-server case in Section 5 using light and heavy-traffic approximations.

Our approach consists of using a Markov chain model to describe the system states and compute

their steady-state probabilities. The computation of some of the steady-state probabilities involves

the resolution of cubic (third degree) or quartic (fourth degree) equations for which we use the

Cardan-Ferrari method.

4.1 Performance Evaluation

Let us define the random process {(x(t), y(t)), t ≥ 0} where x(t) and y(t) denote the state of the

agent and the number of waiting calls in the queue at a given time t ≥ 0, respectively. We have

y(t) ∈ {0, 1, 2, ...}, for t ≥ 0. The possible values of x(t) (corresponding to the possible states of

the agent), for t ≥ 0, are

- “Agent working on the first stage of a call service” denoted by x(t) = A,

- “Idle agent that is waiting for the call to finish her second stage of service” denoted by x(t) = B,

- “Agent working on an outbound job while an underway call has already finished her second stage

of service and is waiting for the agent to start her third stage of service” denoted by x(t) = B′,

- “Agent working on the third stage of a call service” denoted by x(t) = C,

- “Agent working on an outbound job between two call conversations” denoted by x(t) = M ,

- “Agent idle between two call conversations” denoted by x(t) = 0.

Since call inter-arrival times, call service times in each stage, and outbound job service times are

exponentially distributed, {(x(t), y(t)), t ≥ 0} is a Markov chain (Figure 4).

For ease of exposition, we denote by P0 the probability to be in state (0, 0), and for n ≥ 0

we denote by an, bn, b
′
n, cn and mn the probabilities to be in state (A,n), (B,n), (B′, n), (C, n)

and (M,n), respectively. We also define ρi =
λ
µi
, for i ∈ {0, 1, 2, 3}. In Proposition 1, we give the
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B, n+1 

C, n+1 

3pµ  
3µ  

1µ  
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0µ  

B’ , 0 B’, 1 B’ , n B’, n+1 
  

M , 0 M,n+2 

0 , 0 λ  

(1 ) 3p µ−  

λ  

(1 ) 2q µ−  
0µ  

Figure 4: Markov chain for Model PM

probability of delay of a call (probability of waiting) denoted by PD and the expected throughput of

outbound jobs denoted by T . Note that the stability condition of Model PM is λ < 1
q
µ0

+ 1
µ1

+ 1
µ2

+ 1
µ3

.

Proposition 1 For Model PM, we have

PD = 1− 1− p

1 + pρ0
(1− ρ1 − ρ2 − qρ0 − ρ3),

T = µ0

(
1 + ρ0
1 + pρ0

p (1− ρ1 − ρ2 − qρ0 − ρ3) + q(ρ2 + ρ0)

)
.

Proof. From the Markov chain of Model PM, we have

c0 = ρ3(P0 +m0),

cn = ρ3(an−1 + bn−1 + b′n−1 + cn−1 +mn),

for n ≥ 1. Then

∞∑
n=0

cn = ρ3

{
P0 +m0 +

∞∑
n=0

(
an + bn + b′n + cn

)
+

∞∑
n=1

mn

}
. (2)

Since all system state probabilities sum up to 1, i.e., P0 +
∑∞

n=0 (an + bn + b′n + cn +mn) = 1,
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Equation (2) becomes

∞∑
n=0

cn = ρ3. (3)

For the state (M, 0), we have pµ3c0 = λm0, or equivalently c0 = ρ3
m0
p . Therefore c0 = ρ3

P0
1−p . We

then may write

P0 =
1− p

p
m0. (4)

Combining Equation (3) and the relations µ2
∑∞

n=0 bn = µ3
∑∞

n=0 cn = µ0
∑∞

n=0 b
′
n+(1−q)µ2

∑∞
n=0 bn =

µ1
∑∞

n=0 an, we obtain

∞∑
n=0

bn = ρ2,

∞∑
n=0

b′n = qρ0,

∞∑
n=0

an = ρ1. (5)

For state (M,n), n ≥ 1, we have mn = ( ρ0
1+ρ0

)nm0. Therefore
∞∑
i=0

mi = m0(1 + ρ0). Using now

Equation (5) together with the normalization condition implies m0 =
p

1+pρ0
(1−ρ1−ρ2−ρ3− qρ0).

Equation (4) then becomes

P0 =
1− p

1 + pρ0
(1− ρ1 − ρ2 − qρ0 − ρ3)).

A new call enters service immediately upon arrival, if and only if the system is in state (0, 0).

Since the call arrival process is Poison, we use the PASTA property to state that the steady-state

probabilities seen by a new call arrival coincide with those seen at an arbitrary instant. Thus

PD = 1− P0, which leads to the expression of PD.

As for the outbound job expected throughput, it is given by T = µ0 (q
∑∞

i=0 bi +
∑∞

i=0 b
′
i +
∑∞

i=0mi),

which may be also written as T = µ0

(
1+ρ0
1+pρ0

p (1− ρ1 − ρ2 − ρ3 − qρ0) + q(ρ2 + ρ0)
)
. This finishes

the proof of the proposition. 2

Let us now define W , a random variable, as the steady-state call waiting time in the queue, and

P(W ≤ t) as its cumulative distribution function (cdf) for t ≥ 0. Conditioning on a state seen by

a new call arrival and averaging over all possibilities, we state using PASTA that

P(W ≤ t) = P0 · 1 +
+∞∑
n=0

(P(W ≤ t|(A,n)) · an + P(W ≤ t|(B,n)) · bn + P(W ≤ t|(B′, n)) · b′n)

+ P(W ≤ t|(C, n)) · cn + P(W ≤ t|(M,n)) ·mn). (6)

For n ≥ 0, the quantities P(W ≤ t|(A,n)), P(W ≤ t|(B,n)), P(W ≤ t|(B′, n)), P(W ≤ t|(C, n))
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and P(W ≤ t|(M,n)) are the cdf of the conditional call waiting times in the queue, given that a

new arriving call finds the system in states (A,n), (B,n), (B′, n), (C, n) and (M,n), respectively.

In the Markov chain of Model PM, these conditional random variables correspond to first passage

times to state (0, 0) starting from the system state upon a new call arrival. They are convolutions

of independent exponential random variables with arbitrarily rates, not necessarily all equal or all

distinct. Using the expressions of the cdf of an hypoexponential distribution (Amari and Misra

(1997), Legros and Jouini (2015)), we can explicitly derive the expressions of P(W ≤ t|(A,n)),

P(W ≤ t|(B,n)), P(W ≤ t|(B′, n)), P(W ≤ t|(C, n)) and P(W ≤ t|(M,n)), for n ≥ 0, as shown in

Section 4 of the online appendix.

It remains now to compute the probabilities an, bn, b
′
n, cn and mn in n, for n ≥ 0. One can

compute them using the well-known matrix geometric solution approach (Neuts, 1995). However,

the numerical computation is not exact, because the minimal non-negative solution to the matrix

quadratic equation is computed with a given error. In what follows, we instead use the Cardan-

Ferrari method to solve the moment generating function and find the roots, which leads to an exact

numerical computation. From the Markov chain of Model PM, we can write the following iterative

equations

λXn−1 = GXn, (7)

for n ≥ 1, where

Xn =


an
bn
b′n
cn
mn

 ,

for n ≥ 0 is the vector of probabilities to be computed and

G =


µ1 −λ −λ −λ −λ

−µ1 λ+ µ2 0 0 0

0 −qµ2 λ+ µ0 0 0

0 −(1− q)µ2 −µ0 λ+ µ3 0

0 0 0 0 λ+ µ0

 .

The first step to solve Equation (7) is to find the eigenvalues of the matrix 1
λG. These are

solutions of the equation det( 1λG − yI) = 0 with y as variable. One obvious eigenvalue is 1 + 1
ρ0

(see the last line of G), and the remaining ones are those of a 4 × 4 matrix (derived from 1
λG by

removing the last line and the last column) and they are solutions of the following quartic equation

σ4y
4 − (3σ4 + σ3)y

3 + (3σ4 + 2σ3 + σ2)y
2 − (σ4 + σ3 + σ2 + σ1)y + 1 + ρ0(1− q) = 0, (8)
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with y as variable, σ1 = ρ0 + ρ1 + ρ2 + ρ3, σ2 = ρ0ρ1 + ρ0ρ2 + ρ0ρ3 + ρ1ρ2 + ρ1ρ3 + ρ2ρ3, σ3 =

ρ0ρ1ρ2 + ρ0ρ1ρ3 + ρ0ρ2ρ3 + ρ1ρ2ρ3, and σ4 = ρ0ρ1ρ2ρ3. Since the constant term 1 + ρ0(1 − q) in

Equation (8) is strictly positive, zero cannot be a solution of that equation. Then, 1
λG is invertible.

Therefore the eigenvalues of λG−1 are solutions of

(1 + ρ0(1− q))x4 − (σ4 + σ3 + σ2 + σ1)x
3 + (3σ4 + 2σ3 + σ2)x

2 − (3σ4 + σ3)x+ σ4 = 0, (9)

where x = 1
y . We solve the quartic Equation (9) using the Cardan-Ferrari method. In Section 5 of

the online appendix, we describe the details of this method.

The explicit expressions of the probability components of the vector Xn, for n ≥ 0, can be de-

rived, however they are too cumbersome for Model PM. We go further in providing their expressions

for the extreme cases of Model PM in Section 6 of the online appendix, and also using a light-traffic

approximation in Section 7 of the online appendix. In all cases, an exact numerical method is

straightforward and easy to implement. Numerical illustrations are shown later in Section 4.2.

Let us now compute the expected call waiting time in Model PM, denoted by E(W ). Consider

first a model similar to Model PM except that outbound jobs can only be treated inside a call

conversation. We denote this model by Model PM’, and its call expected waiting time by E(W ′).

With a little thought, one can see that the expected call waiting time in Model PM is that of Model

PM’ plus p
µ0
. The reason is mainly related to the memoryless property of outbound job service

times. This result is proven in Lemma 1.

Lemma 1 The expected waiting time in PM is delayed by p
µ0

compared to that in PM’, for p ∈ [0, 1].

Proof. See Section 8 of the online appendix. 2

Note that the proof of Lemma 1 also holds for all independent and identically generally dis-

tributed call service times. Let us now compute the expected waiting time in Model PM’, E(W ′).

We use the Pollaczeck-Kinchin result for an M/G/1 queue. From Pollaczeck (1930), we have

E(W ′) = ρ2(1+c2v)
2λ(1−ρ) , where cv is the coefficient of variation of the service distribution (standard de-

viation over expected value) and ρ is the server utilization (expected arrival rate over expected

service rate). Because of the possibility to do outbound jobs between calls, the random variable

measuring the service time duration, say S, can be written as S = S1 + S2 + US0 + S3, where Si,

a random variable, follows an exponential distribution with rate µi, for i = 0, ..., 3, and U follows

a Bernoulli distribution with parameter q. We denote by E(Z) and V (Z) the expected value (first

moment) and the variance of a given random variable Z, respectively. The first moment of S is

given by

E(S) =
1

µ1
+

1

µ2
+

q

µ0
+

1

µ3
,
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and its variance can be written as (using the independence between Si and Sj for i ̸= j ∈ {0, ..., 3})

V (S) = V (S1) + V (S2) + V (US0) + V (S3) =
1

µ2
1

+
1

µ2
2

+
2q − q2

µ2
0

+
1

µ2
3

.

Then

c2v(S) =

1
µ2
1
+ 1

µ2
2
+ 2q−q2

µ2
0

+ 1
µ2
3(

1
µ1

+ 1
µ2

+ q
µ0

+ 1
µ3

)2 .
After some algebra, we obtain

E(W ′) =
(ρ1 + ρ2 + ρ3)

2 + ρ21 + ρ22 + ρ23 + 2qρ0(ρ0 + ρ1 + ρ2 + ρ3)

2λ(1− (ρ1 + ρ2 + qρ0 + ρ3))
,

which leads to

E(W ) =
p

µ0
+

(ρ1 + ρ2 + ρ3)
2 + ρ21 + ρ22 + ρ23 + 2qρ0(ρ0 + ρ1 + ρ2 + ρ3)

2λ(1− (ρ1 + ρ2 + qρ0 + ρ3))
. (10)

This closes the performance measure analysis of Model PM. Note that for the waiting time of

inbound calls, we ignored the waiting time they may have before starting stage 3. We expect

that the waiting experience is more comfortable before stage 3 than before starting service. The

customer sensitivity to uncertain waiting should decrease after being connected to an agent, because

she would consider such waiting time as a part of her service time. For instance, one could expect

that abandonments would be higher while waiting before stage 1 than before stage 3. For the

rest of the paper, waiting before stage 3 is ignored. We however provide in Section 9 of the online

appendix the details to characterize the distribution of the whole waiting time including that before

stage 3.

For the four extreme cases of Model PM (Models 1,...,4), we derive the expressions of the

outbound job expected throughput, the call probability of delay, and the call expected waiting

time, we simply apply the previous analysis and state the results as shown in Table 2.

4.2 Comparison Analysis and Insights

We start in Section 4.2.1 by a comparison analysis between the extreme cases Models 1,...,4. The

comparison is based on the optimization problem (1). We derive various structural results and

properties for this comparison. In particular, we investigate the impact of the mean arrival rate

intensity of calls on the comparison between Models 1,...,4. One could think of a call center

manager that adjusts the job routing schema as a function of the call arriving workload over the

day. In Section 4.2.2 we focus on the general case Model PM. We prove that the optimization
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Table 2: Expressions of T , E(W ) and PD for Models 1,...,4

Model 1 Model 2

T 0 µ0(1− ρ1 − ρ2 − ρ3)

E(W )
(ρ1+ρ2+ρ3)2(1+

ρ21+ρ22+ρ23
(ρ1+ρ2+ρ3)

2 )

2λ(1−ρ1−ρ2−ρ3)
1
µ0

+ E(W1)

PD ρ1 + ρ2 + ρ3 1

Model 3 Model 4

T µ0(ρ0 + ρ2) µ0(1− ρ1 − ρ3)

E(W )
(ρ1+ρ2+ρ3+ρ0)2(1+

ρ21+ρ22+ρ23+ρ20
(ρ1+ρ2+ρ3+ρ0)

2 )

2λ(1−ρ1−ρ2−ρ3−ρ0)
1
µ0

+ E(W3)

PD ρ0 + ρ1 + ρ2 + ρ3 1

of the parameters of Model PM lead to extreme situations in the sense of a systematic outbound

job treatment of outbound jobs either between calls or inside a call conversation, which gives an

interest in practice for Models 1,...,4.

4.2.1 Comparison between the Extreme Cases

We first compare between Models 1,...,4 based on their performance in terms of the outbound job

expected throughput, denoted by T1,..., T4, respectively. It is obvious that Model 4 is the best and

Model 1 is the worst (no outbound jobs at all). Let us now compare between Models 2 and 3. From

Table 2 we have T2 = µ0(1− ρ1 − ρ2 − ρ3) and T3 = µ0(ρ0 + ρ2). Thus T3 > T2 is equivalent to

λ >
1

1
µ + 1

µ2

,

where 1
µ = 1

µ0
+ 1

µ1
+ 1

µ2
+ 1

µ3
. Since the stability condition for Model 3 is λ < µ, Model 3 is better

than Model 2 if

1
1
µ + 1

µ2

< λ < µ. (11)

Denoting the left term in Inequality (11) by R, the condition under which T3 > T2 is then

R =
1

1
µ0

+ 1
µ1

+ 1
µ3

+ 2
µ2

< λ < µ. (12)

From Inequality (12), we first see that treating outbound jobs only inside a call conversation

(Model 3) becomes better than treating them only between calls (Model 2) is likely the case for

high arrival workloads (in such a case, idle period durations are reduced). We also see that ∂R
∂µ2

> 0

for µ2 > 0, ∂R
∂µ0

> 0 for µ0 > 0, ∂R
∂µ1

> 0 for µ1 > 0, and ∂R
∂µ3

> 0 for µ3 > 0. This means that
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decreasing the expected duration of the call service second stage (1/µ2) relative to the expected

durations of the other call service stages or the outbound job service duration (1/µ1, 1/µ3 and

1/µ0) increases the range of arrival workloads where it is preferred to use Model 2 instead of Model

3. In other words, there is no sufficient time to treat outbound jobs inside the call conversation.

Comparison with a Constraint on E(W )

As a function of the mean call arrival rate, we want to answer the question when should we treat

outbound jobs (which model among Models 1 to 4 should a manger choose?) for the following

problem {
Maximize T

subject to E(W ) ≤ w∗,
(13)

where w∗ is the service level for the expected waiting time, w∗ > 0. Let Wi, a random variable,

denote the expected call waiting time in Model i, i = 1, ..., 4. It is clear that for some periods of

a working day with a very high call arrival rate λ, the manager is likely to choose Model 1 (no

outbound jobs), and for other periods with a very low λ, she is likely to choose Model 4 (outbound

jobs between calls and inside a call). However for intermediate values of λ, the optimal choice is

not clear. This is what we analytically analyze in what follows.

Under the condition of stability of Model i, E(Wi) is continuous and strictly increasing in λ (see

Table 1), for i = 1, ..., 4. The constraint E(Wi) ≤ w∗ is then equivalent to λ ≤ λi, for i = 1, ..., 4,

where

λ1 =
2w∗

2w∗
(

3∑
i=1

1
µi

)
+

(
3∑

i=1

1
µi

)2

+
3∑

i=1

1
µ2
i

, (14)

λ2 =
2
(
w∗ − 1

µ0

)
2
(
w∗ − 1

µ0

)( 3∑
i=1

1
µi

)
+

(
3∑

i=1

1
µi

)2

+
3∑

i=1

1
µ2
i

,

λ3 =
2w∗

2w∗
(

3∑
i=0

1
µi

)
+

(
3∑

i=0

1
µi

)2

+
3∑

i=0

1
µ2
i

,

λ4 =
2
(
w∗ − 1

µ0

)
2
(
w∗ − 1

µ0

)( 3∑
i=0

1
µi

)
+

(
3∑

i=0

1
µi

)2

+
3∑

i=0

1
µ2
i

.

For a given λ and under the condition of stability of Model i (i = 1, ..., 4), the choice of Model i

happens if λ ≤ λi and Ti = maxj∈{1,...,4}, λ≤λj
(Tj). When λ ≤ λ4, the choice is obviously for Model

4. When λ ≤ λ1 and λ > λi for i = 2, 3, 4 the only possibility is Model 1. Proposition 2 provides
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the conditions under which an optimal choice of Model 2 or Model 3 may happen.

Proposition 2 The following holds:

1. For λ < 1
1
µ1

+ 1
µ2

+ 1
µ3

, there exist some values of λ for which Model 2 is optimal if and only if

λ2 > 0.

2. For λ < 1
1
µ0

+ 1
µ1

+ 1
µ2

+ 1
µ3

, there exist some values of λ for which Model 3 is optimal if and only

if 
R ≤ λ3

or

λ2 < λ3.

3. We have λ2 < λ3 if and only if 1
µ0

< w∗ < w∗, where

w∗ =
1

2

√√√√ 4

µ2
0

+

(
1

µ3
+

1

µ2
+

1

µ1

)
4

µ0
+ 5

3∑
i=1

1

µ2
i

+ 6
3∑

i,j=1;i ̸=j

1

µiµj
−
(

1

µ3
+

1

µ2
+

1

µ1

)
.

Proof. See Section 10 of the online appendix. 2

Using Equation (14), the condition in the first statement of Proposition 2 may be rewritten as



w∗ > 1
µ0

or

w∗ < 1
µ0

−

(
3∑

i=1

1
µi

)2

+
3∑

i=1

1

µ2
i

2

(
3∑

i=1

1
µi

) .

(15)

The second inequality in Relation (15) implies w∗ < 1
µ0
. Since at least the expected waiting time

in Model 2 is strictly higher than 1
µ0

(any new call has at least to wait for the residual time of an

outbound job treatment), this second inequality is impossible. Roughly speaking, the condition for

the optimality of Model 2 (for some values of λ) holds when the service level on the call waiting is

higher than the expected outbound job service time.

In what follows, we numerically illustrate the analysis above. For various system parameters,

Figure 5 gives the optimal model choice as a function of the mean arrival rate of calls, λ. An

intuitive reasoning of a manager would choose the ordering Model 4 (outbound jobs between calls

and inside a call), then 2 (outbound jobs only between calls), then 3 (outbound jobs only inside a

call), then 1 (no outbound jobs) as λ increases.
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(a) µ0 = 2, µ1 = µ3 = 1, µ2 = 3, w∗ = 1
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(b) µi = 2 for i = 0, ..., 3, w∗ = 1
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(c) µ0 = 1, µ1 = µ3 = 5, µ2 = 0.8, w∗ = 5
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(d) µ0 = 0.8, µ1 = µ3 = 10, µ2 = 0.5, w∗ = 5

Figure 5: Comparison between Models 1 to 4 with a constraint on E(W )

The ordering Model 2 then Model 3 is not always appropriate, and some situations may require

to consider some counterintuitive ordering. For instance, Model 3 is better than Model 2 for small

values of λ if R ≤ λ4 and λ3 < λ2, see Figure 5(c). In other words, this happens when the con-

straint on E(W ) is not too restrictive and when the expected second stage service duration is long.

Another more surprising ordering, as λ increases, is Model 2, then Model 3, then again Model 2

(see Figure 5(d)) which happens for system parameters such that λ4 < R < λ3 < λ2.

Comparison with a Constraint on P (W < AWT )

In the constraint of Problem (1), we want that the probability that a call waits less than a given

threshold, defined as AWT is at least a given service level, defined as SL, i.e., P(W < AWT ) ≥ SL.

Note that a special case of this constraint is that on PD, the call probability of waiting. The

expressions involved in the analysis of P (W < AWT ) are quite complicated to allow an analytical

comparison between the models as we have done for a constraint on E(W ). We have then conducted

a numerical comparison analysis (not totally illustrated here). The main qualitative conclusions

are similar to those for the case of a constraint on E(W ). As λ increases, it is not always true as

one would intuitively expect that a manager should choose first Model 2 and then at some point of

λ she shifts to Model 3 (Figure 6(a)). The optimal choice may change with the system parameters
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and we may have the ordering Model 3 then Model 2 (Figure 6(b)).
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(a) µi = 2 for i = 0, ..., 3 and α∗ = 80%
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(b) µ0 = 1, µ1 = 5 = µ3, µ2 = 0.8 and α∗ = 20%

Figure 6: Comparison between Models 1 to 4 with the constraint on P(W < 1)) ≥ α∗

4.2.2 Optimization of Model PM

In this section we focus on the general case, Model PM. We are interested in the optimization of

the parameters p and q in Model PM for Problem (1). Concretely, we want to find the optimal

routing parameters of Model PM that allows the manager to maximize the outbound job expected

throughput while respecting a call service level constraint. Recall that the stability condition of

Model PM is λ < 1
q
µ0

+ 1
µ1

+ 1
µ2

+ 1
µ3

.

The expression of the outbound job expected throughput T for Model PM is given in Proposition

1. It is straightforward to prove that for p, q ∈ [0, 1] the maximum of T (best situation) is reached

for p = q = 1. The proof is then omitted. Also, the expected call waiting time of Model PM (given

in Equation (10)) is maximized (worst) for p = q = 1. Therefore in order to solve Problem (1), one

would be interested analyzing the sensitivity of T with respect to p and q. In Lemma 2 we prove

a sensitivity result for T . The result will be used later in our analysis.

Lemma 2 We have ∂T
∂p > ∂T

∂q if and only if 0 < ρ0 < ρ0, where

ρ0 =

√
(p− q − ρ1 − ρ2 − ρ3)2 − 4(p2 − p− q)(1− ρ1 − ρ2 − ρ3)− q + p− (ρ1 + ρ2 + ρ3)

2(q − p2 + p)
.

Proof. We want to solve the following inequality in ρ0:

∂T

∂p
= µ0

(1− ρ1 − ρ2 − qρ0 − ρ3)(1 + ρ0)

(1 + pρ0)2
>

∂T

∂q
= µ0

ρ0(1− p)

1 + pρ0
.

This is equivalent to (1− ρ1 − ρ2 − ρ3 − qρ0) (1 + ρ0)− ρ0(1− p) (1 + pρ0) > 0, or also

(p2 − p− q)ρ20 + (p− q − ρ1 − ρ2 − ρ3)ρ0 + 1− ρ1 − ρ2 − ρ3 > 0. (16)

The discriminant for this inequality is ∆ = (p−q−ρ1−ρ2−ρ3)
2−4(p2−p−q)(1−ρ1−ρ2−ρ3) > 0.
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Equation (16) has then the two following solutions:√
(p− q − ρ1 − ρ2 − ρ3)2 − 4(p2 − p− q)(1− ρ1 − ρ2 − ρ3)− q + p− (ρ1 + ρ2 + ρ3)

2(q − p2 + p)

and

−
√

(p− q − ρ1 − ρ2 − ρ3)2 − 4(p2 − p− q)(1− ρ1 − ρ2 − ρ3) + q − p+ ρ1 + ρ2 + ρ3
2(q − p2 + p)

.

Since the first solution is positive (denoted by ρ0) and the second one is negative, ρ0 ∈ [0; ρ∗0),

which finishes the proof of the lemma. 2

In what follows we address the question: starting from p = q = 1, in which direction should we

decrease T? Should we decrease p or q first?

For p = q = 1, we have ρ0 = 1
2

(√
(ρ1 + ρ2 + ρ3)2 + 4(1− ρ1 − ρ2 − ρ3)− (ρ1 + ρ2 + ρ3)

)
. Let us

now prove (for p = q = 1) that ρ0 > ρ0. From the one hand, proving ρ0 > ρ0 is equivalent to

proving
√

(ρ1 + ρ2 + ρ3)2 + 4(1− ρ1 − ρ2 − ρ3) > 2ρ0 + (ρ1 + ρ2 + ρ3) or equivalently ρ20 + ρ0(ρ1 +

ρ2 + ρ3)− (1− (ρ1 + ρ2 + ρ3)) < 0 or also (ρ0 + 1)(ρ0 − (1− (ρ1 + ρ2 + ρ3)) < 0. From the other

hand, we have ρ0 + 1 > 0. Also, the stability condition of Model 4 (Model PM with p = q = 1)

is ρ0 + ρ1 + ρ2 + ρ3 < 1. Then ρ0 < 1 − (ρ1 + ρ2 + ρ3). As a conclusion the inequality ρ0 > ρ0

is true, for p = q = 1. Using Lemma 2, this means that starting from p = q = 1, we have

∂T
∂p > ∂T

∂q > 0. As a consequence, when we need to modify the values of p and q in order to decrease

the expected call waiting time (the constraint in Problem (1)), the maximum of T is guaranteed

by first decreasing q (the outbound job expected throughput is less sensitive to the variation of q

than that of p). The question now is: which direction to use next? In other words when p = 1

and some value of q such that 0 < q < 1, is it possible that it is better to decrease p instead of

q? The answer is no and the proof is as follows. For p = 1, let us try to find a value of q for

which we have ρ0 ≤ ρ0. This is equivalent to

√
(1−q−ρ1−ρ2−ρ3)2+4q(1−ρ1−ρ2−ρ3)−q+1−ρ1−ρ2−ρ3

2q ≤ ρ0.

Thus, q2ρ20 + qρ0 − (1 − ρ1 − ρ2 − ρ3)(1 + ρ0) > 0. This trinomial in q has two real solutions;

q1 = −1+
√

4ρ0+5−4(ρ1+ρ2+ρ3)(ρ0+1)

2ρ0
and q2 =

−1+
√

4ρ0+5−4(ρ1+ρ2+ρ3)(ρ0+1)

2ρ0
. Obviously q1 < 0. We

also have q2 > 1 because: proving q2 − 1 > 0 is equivalent to proving ρ20 + (ρ1 + ρ2 + ρ3)ρ0 +1 > 0.

The discriminant of this latter trinomial in ρ0 is negative and it is equal to (ρ1 + ρ2 + ρ3)
2 − 4. So

q2 > 1 for any ρ0 > 0. Therefore it is impossible to find a value of q between 0 and 1 for which

0 < ∂T
∂p < ∂T

∂q . In conclusion starting from p = q = 1, when we need to change the values of p and

q, the best direction to maximize T is to first decrease q until q = 0 and only then start to decrease

p from p = 1.

Consider now Problem (1) with a constraint on E(W ). From the one hand, the constraint
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E(W ) ≤ w∗ implies

p

µ0
+

(ρ1 + ρ2 + ρ3)
2 + ρ21 + ρ22 + ρ23 + 2qρ0(ρ0 + ρ1 + ρ2 + ρ3)

2λ(1− (ρ1 + ρ2 + qρ0 + ρ3))
≤ w∗,

for p, q ∈ [0, 1], or equivalently

q ≤ 2λ(1− ρ1 − ρ2 − ρ3)(w
∗ − p/µ0)− (ρ1 + ρ2 + ρ3)

2 − ρ21 − ρ22 − ρ23
2ρ0(ρ0 + ρ1 + ρ2 + ρ3 + λ(w∗ − p/µ0))

, (17)

for p, q ∈ [0, 1]. On the other hand, the condition in Lemma 2, 0 < ρ0 < ρ0, is equivalent to

q <
1− (ρ1 + ρ2 + ρ3)(1 + ρ0)

ρ0(1 + ρ0)
+

1− ρ0
1 + ρ0

p+
ρ0

1 + ρ0
p2, (18)

for p, q ∈ [0, 1]. Let us denote the right hand sides of Inequalities (17) and (18) by the functions in

p ∈ [0, 1] f(p) and g(p), respectively. Illustrations of these functions are given in Figure 7.
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(a) λ = 0.5, µ0 = µ1 = µ2 = µ3 = 2, w∗ = 10
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(b) λ = 0.22, µ0 = µ1 = µ2 = µ3 = 2, w∗ = 1
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(c) λ = 0.1, µ0 = 0.1, µ1 = µ2 = µ3 = 2, w∗ = 5

Figure 7: Behavior of f(p) and g(p)

In what follows we prove an interesting result on the optimal values of p and q. Consider for

example Figure 7(a) and assume that the agent is in a situation such that (p, q) belongs to Zone

1 or 2. Then the constraint on E(W ) is respected, but T can be improved. Using Lemma 2, we

should increase p first (q first) for Zone 1 (Zone 2). From Figure 7(a), we also see that we should
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decrease p first (q first) for Zone 3 (Zone 4). It is clear that the optimal couple (p, q) will be on

the curve of f . Moreover, we prove in Theorem 1 that the optimal point is such that p ∈ {0, 1} or

q ∈ {0, 1}.

Theorem 1 For p, q ∈ [0, 1], the optimal values of p and q of the optimization problem

{
Maximize T

subject to E(W ) ≤ w∗,
(19)

are always extreme values (0 or 1) for at least p or q.

Proof. We want to maximize the outbound job expected throughput T (p, q) while respecting a

constraint on the expected call waiting time (E(W )(p, q) ≤ w∗). We distinguish the following cases.

Case 1: λw∗ <
(ρ1+ρ2+ρ3)2

(
1+

ρ21+ρ22+ρ23
(ρ1+ρ2+ρ3)

2

)
2(1−ρ1−ρ2−ρ3)

. In this case the constraint on the expected waiting

time cannot be met and Problem (1) has no solution.

Case 2: λw∗ ≥ ρ0 +
(ρ1+ρ2+ρ3+ρ0)2

(
1+

ρ21+ρ22+ρ23+ρ20
(ρ1+ρ2+ρ3+ρ0)

2

)
2(1−ρ1−ρ2−ρ3−ρ0)

. Since T (p, q) increasing in both p and in q

and the constraint on E(W ) is met for p = q = 1, the optimal values for the control parameters

are p = q = 1 (Model 4).

Case 3:
(ρ1+ρ2+ρ3)2

(
1+

ρ21+ρ22+ρ23
(ρ1+ρ2+ρ3)

2

)
2(1−ρ1−ρ2−ρ3)

< λw∗ < ρ0 +
(ρ1+ρ2+ρ3+ρ0)2

(
1+

ρ21+ρ22+ρ23+ρ20
(ρ1+ρ2+ρ3+ρ0)

2

)
2(1−ρ1−ρ2−ρ3−ρ0)

. In this case,

since T is increasing in p and in q, the constraint on E(W ) should be saturated. We use the method

of Lagrange multipliers to find the optimal point (p, q). Let us denote the Lagrange multiplier by

α (α is real). Then α and the extremum (p, q) of our optimization problem are solutions of the set

of the 3 equations D(T + α(W − w∗)) = 0, where D is the differential applicator in α, p and q.

These 3 equations are

∂(T + α(W − w∗))

∂p
= µ0

(1− ρ1 − ρ2 − qρ0 − ρ3)(1 + ρ0)

(1 + pρ0)2
+ α

1

µ0
= 0, (20)

∂(T + α(W − w∗))

∂q
= µ0

(1− p)ρ0
1 + pρ0

(21)

+ α
1

2λ

ρ0(2(ρ0 + ρ1 + ρ2 + ρ3)(1− (ρ1 + ρ2 + ρ3)) + (ρ1 + ρ2 + ρ3)
2 + ρ21 + ρ22 + ρ23)

(1− (ρ1 + ρ2 + ρ3 + qρ0))2
= 0,

∂(T + α(W − w∗))

∂α
=

p

µ0
+

(ρ1 + ρ2 + ρ3)
2 + ρ21 + ρ22 + ρ23 + 2qρ0(ρ0 + ρ1 + ρ2 + ρ3)

2λ(1− (ρ1 + ρ2 + qρ0 + ρ3))
− w∗ = 0.

(22)

From Equation (20), we obtain α = −µ2
0
(1+ρ0)(1−(ρ1+ρ2+ρ3+qρ0))

(1+pρ0)2
. Substituting this expression in

Equation (21) leads to

(1− p)ρ0
1 + pρ0

−(1 + ρ0)(2(ρ1 + ρ2 + ρ3 + ρ0)(1− (ρ1 + ρ2 + ρ3)) + (ρ1 + ρ2 + ρ3)
2 + ρ21 + ρ22 + ρ23)

2(1 + pρ0)2(1− (ρ1 + ρ2 + ρ3 + qρ0))
= 0,
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which implies

q = −(1− (ρ1 + ρ2 + ρ3))(ρ
2
0(1 + p2) + ρ0p) + (ρ1 + ρ2 + ρ3 − ρ1ρ2 − ρ1ρ3 − ρ2ρ3)(1 + ρ0)

ρ20(1− p)(1 + pρ0)
.

Since 1 − (ρ1 + ρ2 + ρ3) > 0 (stability condition for Model 1), we have q < 0 if p ∈ (0, 1). It is

therefore impossible to have a critical point with both p and q in (0, 1). So, the optimal solution of

Problem (1) is not a critical point. We then deduce for the optimal values of p and q that at least

one them needs to have an extreme value (0 or 1). This finishes the proof of the theorem. 2
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(b) µi = 2 for i = 0, ..., 3

Figure 8: Optimal p and q with w∗ = 1

Figure 8 provides a numerical illustration of Theorem 1. We also observe that as the arrival

rate increases, it is optimal to first reduce the use of the break and next reduce the use of the

time between the service of inbound calls. From Figure 9, we observe that the result in Theorem

1 with a constraint on the expected waiting time still holds with a constraint on the waiting time

percentile (a rigorous proof is too complex).
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(a) µ0 = 2, µ1 = µ3 = 1, µ2 = 3
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(b) µi = 2 for i = 0, ..., 3

Figure 9: Optimal p and q with P(W < 1) ≥ 80%
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5 Multi-Server Case

In this section, we focus on Problem (1) for the multi-server case. The idea is to assess the

applicability of our single server results to a multi-server setting. We want to either optimize p

and q for Model PM, or give the ordering of the extreme cases Models 1 to 4. An exact analysis

as that done for the single server case is too complex. First, we conduct a simulation study to

optimize (p, q) through an exhaustive search and relate the observations with the results in the

single server case. We also investigate the impact of the system size on the optimal choice of p and

q. Finally, we propose closed-form expressions for the approximate performance measures under

light and heavy-traffic regimes. This allows to easily optimize the parameters p and q under those

particular regimes.

5.1 Impact of the System Size

We use simulation to obtain the (p, q) couple which answers Problem (1). The optimization ap-

proach consists of an exhaustive search by discretizing the supports of p and q. The quality of the

obtained solution is controlled through the choice of the spread between two adjacent discretized

values. The results are given in Figure 10 and Table 3. Figure 10(a) provides a numerical evidence

that Theorem 1 is still true for s > 1. We observe as a function of the system parameters that

at least one of the routing parameters is either 0 or 1. This gives the merit to the study of the

extreme cases Models 1, ..., 4. While increasing the workload, we again observe that the choice is

first for p = q = 1; then p = 1 and 0 < q < 1; then 0 < p < 1 and q = 0. Thus the two questions of

routing outbound jobs (between calls or during the break) are not considered together at the same

time. Figure 10(b) also illustrates the ordering between the extreme cases.
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(a) Optimal p and q
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(b) Comparison between Models 1 to 4

Figure 10: Model choice with a constraint on E(W ) (µ0 = 2, µ1 = µ3 = 1, µ2 = 3, w∗ = 1, s = 10)

Table 3 provides simulation results relating the number of agents s and the intervals of call

arrival rates for the situations p = q = 1; p = 1 and 0 < q < 1; 0 < p < 1 and q = 0. The

table gives the frontiers of the λ values that determine the choice of p and q. For example, the
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Table 3: Impact of the system size (µ1 = µ3 = 1, µ2 = 3, µ0 = 2)

λ

s p = q = 1 p = 1, 0 < q < 1 0 < p < 1, q = 0

1 0.08 0.10 0.16
5 1.34 1.66 1.74
10 3.06 3.75 3.85
20 6.56 8.04 8.09
50 17.08 20.83 20.87
100 35.08 42.50 42.53

line s = 5 indicates that the choice is p = q = 1 for 0 ≤ λ ≤ 1.34; it is p = 1 and 0 < q < 1 for

1.34 < λ ≤ 1.66; and it is 0 < p < 1 and q = 0 for 1.66 < λ ≤ 1.74. Table 3 reveals that the interval

of workload values for which the solution p = q = 1 answers Problem (1) enlarges in the system

size. The explanation is related to the pooling effect. The larger is the system, the better are the

performance for inbound calls. We then may profit from the two opportunities for the routing of

outbound jobs (inside and between calls).

We also observe that the interval of workload values for which p = 1 enlarges in the system

size. An explanation of this observation can be given using an approximation of the multi-server

system. We propose a super server approximation as follows. We replace the s servers by a single

server, where the service rates become sµ0, sµ1, sµ2, and sµ3 for outbound jobs, stage 1, stage 2

and stage 3, respectively. Although this approximation only works for the particular cases of very

small number of servers or heavily loaded call centers, it still allows to provide some evidence of

the numerical observation in the table. For the super server model, we can apply the single server

results. Let us then consider the threshold call arrival rate values λi, for i = 1, ..., 4, in Equations

(14), and let us substitute the service rates µi by sµi, for i = 0, ..., 3. These thresholds determine

the limits of the intervals where a system manager should choose p and/or q equal to 0 or 1. For

a large value of s, we have 1
sµ0

<< w∗, 1
s

(
3∑

i=j

1
µi

)2

<<
3∑

i=j

1
µi

and 1
s

3∑
i=j

1
µ2
i
<<

3∑
i=j

1
µi

for j ∈ {0, 1}.

This leads to λ1 = λ2 = s
3∑

i=1

1
µi

and λ3 = λ4 = s
3∑

i=0

1
µi

, which proves that the interval of λ for which

Models 1 and 3 are considered can be neglected when s is large. Recall that the stability constraint

for Models 1 and 2 is λ < s
3∑

i=1

1
µi

. Thus, when s is high, Model 2 (q = 0 and p = 1) can be used

until we hit the system instability. This means that in large call centers we should most of the

time route outbound jobs between calls. An intuitive explanation is related to the high number of

agents in large call centers. In such a case, even with a choice of p = 1 (i.e., systematic decision of

initiating outbound jobs between inbound calls), an arriving call will not likely wait much longer

than with a choice of p < 1.

The remaining question is the routing of outbound jobs during the break. To the contrary to
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the routing between calls, there is not an asymptotic choice for the routing inside a call as the

system size grows. Since λ1−λ4

λ4
=

1
µ0
3∑

i=0

1
µi

, the relative length of the interval (λ4, λ1) in which p = 1

and 0 ≤ q ≤ 1 does not depend on s. This agrees with the numerical experiments in Table 3.

5.2 Approximations

We develop here an approximate analysis of the multi-server performance measures under light and

heavy-traffic regimes of inbound calls. We also illustrate how the approximations can be used to

solve Problem (1).

Light-traffic approximation. It is unusual to observe a light-traffic regime in traditional call

centers with only inbound calls. The heavy-traffic regime is instead observed since the common

practice is to make agents busy almost all the time. The main motivation for considering the light-

traffic regime is that it can be decided by the management in a multi-channel context. The decision

to overstaff for inbounds in order to treat a high volume of outbounds can be motivated by the

value that outbounds may represent for the call center (case of sales activities for example). Note

however that since the number outbound jobs is sufficiently large, even with a very light-traffic of

inbound calls, agents may remain busy most of the time.

Proposition 3 provides the approximate performance measures under a light-traffic regime. We

write f(x) ∼
x→x0

g(x) to state that lim
x → x0

f(x)
g(x) = 1, for x0 ∈ R.

Proposition 3 We have E(W ) ∼
λ→0

p

sµ0
, T ∼

λ→0
Ip>0(s− 1)µ0 + pµ0, and for AWT > 0,

P (W < AWT ) ∼
λ→0

1− pe−µ0sAWT , where Ip>0 is 1 for p > 0 and 0 otherwise.

Proof. Assume that under a light-traffic regime, we never observe more than one inbound call in

the system. Recall that an agent stops treating outbound jobs after the service completion of an

outbound job only if all the other agents are busy and one call is waiting in the queue. Consider

an empty system with idle agents. Upon the service completion of the first call, the involved agent,

referred to as agent 1, starts the treatment of outbound jobs with probability p. Thus, upon the

service completion of the first call, one agent is working on an outbound job and s− 1 agents are

idle with with probability p, and all agents are idle with probability 1− p. Upon the arrival of the

second call (the first call has already left the system, and agent 1 is still working on outbound jobs),

this call is immediately routed to an idle agent. Upon the call service completion, again this agent

starts the treatment of outbound jobs with a probability p. Thus, upon the service completion of

the second call, two agents are working on outbound jobs and s−2 agents are idle with probability

p2, one agent is working on an outbound job and s− 1 agents are idle with probability 2p(1− p),

and all agents are idle with probability (1 − p)2. Thus, for p > 0, as the total number of arrived

calls increases the probability that s− 1 agents are working on outbound jobs converges to one.
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Table 4: Light-traffic approximation (µ0 = 2, µ1 = µ3 = 1, µ2 = 3, s = 10, q = 50%)

Simulation Approximation
p E(W ) P (W < 0.1) T E(W ) P (W < 0.1) T

0% 0.0000 1.0000 0.0011 0.0000 1.0000 0.0000
25% 0.0126 0.9654 18.4991 0.0125 0.9662 18.5000

λ = 0.01 50% 0.0250 0.9317 18.9983 0.0250 0.9323 19.0000
75% 0.0376 0.8958 19.4987 0.0375 0.8985 19.5000
100% 0.0502 0.8640 19.9991 0.0500 0.8647 20.0000

0% 0.0000 1.0000 0.0501 0.0000 1.0000 0.0000
25% 0.0135 0.9621 17.3916 0.0125 0.9662 18.5000

λ = 0.1 50% 0.0264 0.9264 18.3770 0.0250 0.9323 19.0000
75% 0.0389 0.8930 19.0035 0.0375 0.8985 19.5000
100% 0.0553 0.8574 18.2196 0.0500 0.8647 20.0000

Consider then a situation where s−1 agents work on outbound jobs. After the service completion

of a new arrived call, the involved agent starts doing outbound jobs with a probability p or remains

idle with a probability 1− p. As a consequence, the probability that the system has s busy agents

on outbound jobs is p and the probability that the system has s− 1 busy agents on outbound jobs

and one idle agent is 1−p. Therefore, an arbitrary new call arriving to the system does not wait for

service with probability p, and has to wait an exponential duration with rate µ0 with probability

1 − p. This gives the proof of the expressions of the expected value and the cdf of W . Note that

the result agrees with Equation (10) for the single server case. For p > 0, the system converges to

a situation with s− 1 agents working all the time on outbound jobs, and one agent that works on

outbound jobs with probability p times the proportion of time during which this server does not

work on inbound calls. The latter proportion is approximately 1. This finishes the proof of the

throughput result, and also that of the proposition. 2

In Table 4, we compare between the light-traffic approximation and simulation. We observe

that the simulation results are close to the approximate ones for a very low workload. One can

make use of the light-traffic approximation to address the routing optimization problem. Under

the light-traffic regime, the presence of calls in the system can be neglected. The parameter q does

not thus impact the results. The only parameter to focus on for Problem (1) is p. For a choice

limited to the extreme cases, we should choose Model 4 if 1
sµ0

≤ w∗ (or 1 − e−µ0sAWT ≥ SL).

Otherwise Model 3 is the best. The optimal value of p with the constraint P (W < AWT ) ≥ SL is

p = SLesµ0AWT . The optimal expected throughput is then (s− 1)µ0 + µ0SLe
sµ0AWT . The optimal

value of p with a the constraint E(W ) ≤ w∗ is p = sµ0w
∗. The optimal expected throughput is

then (s− 1)µ0 + sµ2
0w

∗.

Heavy-traffic Approximation. Proposition 4 provides the approximate performance measures

under a heavy-traffic regime.
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Proposition 4 Let 1
µeq

= 1
µ1

+ 1
µ2

+ q
µ0

+ 1
µ3
. We have

E(W ) ∼
λ→sµeq

[
s−1∑
x=0

(λ/µeq)
x

x!
+

(λ/µeq)s

s!

1− λ/sµeq

]−1
(λ/µeq)

s

2µeq(s− 1)!(s− λ/µeq)2
(23)(

1 + µ2
eq

(
1

µ2
1

+
1

µ2
2

+
2q − q2

µ2
0

+
1

µ2
3

))
, (24)

T ∼
λ→sµeq

sq

(
1

µ0
+

1

µ2

)
µeq, (25)

and

P (W < AWT ) ∼
λ→sµeq

1− e

−
2s(1− λ

sµeq )µeqAWT

1+

(
1
µ2
1

+ 1
µ22

+
2q−q2

µ2
0

+ 1
µ23

)
µ2eq

. (26)

Proof. Under a heavy-traffic regime, there is always at least one inbound call waiting in the

queue. Since inbound calls have a non-preemptive priority over outbound jobs, there would not

be then a possibility to route outbound jobs between calls. Outbound jobs are only treated inside

an inbound call conversation. The system can be therefore approximated by an M/G/s queue

with mean arrival rate λ and expected service rate 1
µeq

. We next use the Lee and Longton (1959)

approximation (see also Whitt (1983)); E(M/G/s) = E(M/M/s) × 1+c2v
2 , where c2v in our case is

given by c2v = µ2
eq

(
1
µ2
1
+ 1

µ2
2
+ 2q−q2

µ2
0

+ 1
µ2
3

)
. This proves Equation (23). Note that combining s = 1,

p = 0 and this formula agrees with Equation (10). For the call waiting time cdf, Whitt (1983) shows

that, for an M/G/s queue under a heavy-traffic regime, the distribution of (1−ρ)W converges to an

exponential distribution with rate
2µeq

1+c2v
. This implies Equation (26). Since outbound jobs are only

treated inside an inbound call conversation, the probability that an agent is working on outbound

jobs is µeq

(
q
µ0

+ q
µ2

)
. So, the outbound job expected throughput is sq

(
1
µ0

+ 1
µ2

)
µeq. This finishes

the proof of the proposition. 2

In Table 5, we compare between the heavy-traffic approximation and simulation. We observe

that the simulation results converge to the approximate ones as the workload increases (q increases).

The only parameter here is q. A simple analytical analysis, as that under a light-traffic regime, is

not possible here. One can then numerically optimize the parameter q, using Equations (23)-(26).

For a choice limited to the extreme cases, as the workload increases, we should first choose Model

4 then Model 2.
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Table 5: Light-traffic approximation (λ = 3.8, µ0 = 2, µ1 = µ3 = 1, µ2 = 3, s = 10, p = 50%)

Simulation Approximation
q E(W ) P (W < 0.1) T E(W ) P (W < 0.1) T

0% 0.7614 0.0979 1.3148 0.8999 0.0676 1.4286
25% 1.8451 0.0403 1.7519 1.9836 0.0383 1.8644
50% 8.8221 0.0117 2.1992 8.9706 0.0104 2.2581
55% 19.4514 0.0054 2.3314 19.4617 0.0050 2.3323
58% 56.3273 0.0020 2.3757 56.3274 0.0018 2.3761

59.50% 631.1100 0.0069 2.3976 631.1100 0.0069 2.3978

6 Extensions

Using simulation, we assess to what extent the results of the previous sections still apply for more

general settings closer to real-life call centers. In particular, we check wether the result, which states

that at least one of the control parameters should have an extreme value, still hold or not. The

modeling is generalized by considering non-Markovian service time distributions, non-stationary

arrival process, and customer abandonment from the queue. In Sections 6.1 and 6.2, we describe

the simulation experiments of the new settings and discuss the related observations, respectively.

6.1 Simulation Experiments

In the simulation experiments, we only include one new future each time. This is to isolate the

impact of each feature, which allows for a better understanding of the results.

Non-Markovian Service Phase Durations. Some studies have compared empirical distribu-

tions of service durations to exponential distributions and found an acceptable fit. One example

is Kort (1983), which summarizes models of the Bell System Public Switched Telephone Network,

developed in the 70’s and 80’s. Another example is that of Harris et al. (1987) for IRS call centers.

More recent studies propose two other parametric statistical families that arise in applications:

Erlang (or, more generally, Gamma) distribution and the lognormal distribution. Both families

are explored in Chlebus (1997), who analyzes holding-time distributions in cellular communica-

tion systems. Other confirmations for the log-normal fit for call center service times are given in

Bolotin (1994), Mandelbaum et al. (2000), and in Brown et al. (2005). Note also that mixtures of

Erlang distributions are dense among all non-negative distributions. This sub-family of phase-type

distributions can be then appropriately employed (Latouche and Ramaswami, 1999).

Since service time distribution may vary in practice, we assess the impact of the service time

variability on the results for Problem (1). We choose two different variability levels (cv = 0 and cv =

2) instead of that of the exponential distribution (cv = 1). We consider the deterministic (Figure

11(a)) and the log-normal distributions (Figure 11(b)) for the three service phases of inbound calls.
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In both distribution cases, we use the same parameter values as those used in Figure 10(a) so as

to have a coherent comparison. The ratio 1/µi represents the expected length of service phase i

(i = 1, 2, 3). In Figure 11(b), the standard deviation of each service phase is chosen such that it

doubles the expected length of the phase.
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(a) Deterministic service phase distributions (cv = 0)
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(b) Log-normal service phase distributions (cv = 2)

Figure 11: Optimal p and q (µ0 = 2, µ1 = µ3 = 1, µ2 = 3, w∗ = 1, s = 10)

Time-Dependent Arrival Process. In real-life call centers, the mean arrival rate of calls is

not constant but time-dependent (Akşin et al., 2007). We refer the reader to the recent survey of

Whitt (2016) for the analysis of queues with time-dependent arrival rates. A common appropriate

assumption for the process of arrivals is to consider a non-homogeneous Poisson process (Kim

and Whitt, 2014). Following Ibrahim and Whitt (2011); Jouini et al. (2015), we propose here a

simulation model with a non-homogeneous Poisson process where the arrival rate follows a sinusoidal

function of the time

λ(t) = λ+ a sin(f · t),

where λ is the average arrival rate, a is the amplitude, and f is the frequency. In order to provide

an insightful illustration, we use the numerical values of Figure 10(a). To avoid negative values for

the arrival rate, we choose a = 0.5λ in Figure 12(a) and a = 0.8λ in Figure 12(b). Therefore, both

the average and the amplitude of the arrival rate increase in λ.

Customers Abandonment. An important feature in call centers is abandonment. We extend

here the modeling by allowing inbounds to be impatient. After entering the queue, an inbound call

will wait a random length of time for service to begin. If service has not begun by this time the call

will abandon and be lost. We assume here that the abandonment time of inbounds from the queue

is exponentially distributed with rate γ. Call center managers are concerned about the proportion

of abandonments of inbounds. We update the optimization problem by considering a service level

constraint on abandonments instead of that on waiting times. The optimization problem thus
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(b) a = 0.8λ

Figure 12: Optimal p and q (µ0 = 2, µ1 = µ3 = 1, µ2 = 3, w∗ = 1, s = 10, f = 0.1)

becomes {
Maximize the expected throughput of outbound jobs

subject to a service level constraint on the proportion of abandonments.
(27)

In Figure 13, we answer Problem (27) for the same parameter values as those in Figure 10(a).

We denote by Pa the proportion of abandonments. A common service level objective in practice is

that less than 5% of calls abandon the queue (Akşin et al., 2007). We denote this threshold by P ∗
a ,

P ∗
a = 5%.
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(a) γ = 1
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(b) γ = 10

Figure 13: Optimal p and q (µ0 = 2, µ1 = µ3 = 1, µ2 = 3, s = 10, P ∗
a = 5%)

6.2 Discussion

From the simulation experiments for the general settings, the conclusion which states that at least

one of the two control parameters should be extreme still hold in all cases. Moreover:

• The maximal value for λ for which it is possible to answer Problem (1) or Problem (27)

decreases with the variability of the service time (Figure 11), the amplitude of the arrival

rate (Figure 12) or the abandonment rate (Figure 13). The reason is related to the increasing
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difficulty to meet the service level constraint (performance deterioration) as the variability in

service or arrival increase, or as the abandonment rate increases.

• The expected waiting time is more affected than the throughput of outbound jobs by the

changes in the service time distribution or the arrival process. This can be seen through the

curves of the throughput which are very similar in Figures 10(a), 11(a), 11(b), 12(a) and

12(b), whereas the curves of the expected waiting time increase faster in λ as the variability

in service or arrival processes increase. In the single server case, these observations may

be explained by the similarity between our model and an M/GI/1 queue. It has been shown

(Chapter 5 in Kleinrock (1975)) that in an M/GI/1 queue, the probability of an empty system

is only function of the first moment of the service time whereas the expected waiting time is

function of its two first moments. The justification of this observation for the time-dependent

arrival process is similar to the one for the variability of the service times by considering the

GI/M/1 queue instead of the M/GI/1 queue (Chapter 6 in Kleinrock (1975)).

• In Figure 13, we observe that the same qualitative conclusions hold when defining the service

level objective on the proportion of abandonment (instead of waiting time). Moreover, we

observe that the use of the break reduces with customer impatience.

In summary, we observe that the conclusions from the analysis of the stylized modeling still hold

qualitatively for the more general real-life modeling. Moreover, the applicability of the results is

supported by previous findings in the literature: (i) it has been shown that the variability of service

times is not important for large call centers. The performance mainly depend on their expected

value (Mandelbaum and Schwartz, 2002; Whitt, 2005); (ii) the time-dependent arrival process can

be approximated, as usually done, by considering multiple short-interval stationary parameters. It

has been shown in the literature (Gans et al., 2003; Brown et al., 2005) that it is appropriate to

assume constant parameter values during short intervals of the working day of 30 or 60 minutes. In

these intervals, the stationary regime is reached and therefore the results may be applied interval

by interval.

7 Conclusions

We considered a blended call center with inbound calls and outbound jobs. The call service is

characterized by successive stages where one of them is a break for the agent in the sense that

inside the conversation there is no required interaction during a non-negligible time between the two

parties. We addressed an important question in the call center practice: how should managers make

use of this opportunity in order to better improve performance? We focused on the optimization

of the outbound job routing given that calls have a non-preemptive priority over outbound jobs.
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Our objective was to maximize the expected throughput of outbound jobs subject to a constraint

on the call waiting time.

We developed a general framework (Model PM) with two probabilistic parameters for the out-

bound job routing to agents. One parameter controls the routing between calls, and the other does

the control inside a call conversation. We have also considered four particular cases corresponding

to the extreme values of the probabilistic parameters. We derived various structural results for

the single server case. We have also numerically illustrated and discussed the theoretical results

in order to provide guidelines to call center managers. In particular, we proved for the optimal

routing that all the time at least one of the two outbound job routing parameters has an extreme

value. We then focused on the routing optimization problem for the multi-server case and consid-

ered a more general setting, using simulation and approximations developed under the light and

heavy-traffic regimes. We found that most of the observations of the single server case are still

valid (in particular the result stating that at least one control parameter has an extreme value).

There are several avenues for future research. It would be interesting to extend the structural

results to the multi-server case. It would also be useful but challenging to extend the analysis to

cases with an additional channel, in particular the chat which is increasingly used in call centers.

Using the chat channel, an agent may handle many customers at the same time, which represent

an additional opportunity to efficiently use the agent time.
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